Beläggsmodellen i svenska nationella prov Exemplet Religionskunskap årskurs 9

Main Article Content

Frank Dige Bach


In the Swedish national tests, the so-called “Beläggsmodell” is used to generate test grades in seven school subjects. This article examines the origin and effects of the “Beläggsmodell” on test scores in one of these subjects, Religious studies. Classical methods for evaluating the quality of tests are used in combination with confirmatory factor analysis. The results show that the tests have a reliability above 0.92 and that the “Beläggsmodell” reduces this in unpredictable ways for individual students. Confirmatory factor analysis shows that the tests are mainly one-dimensional, which has the consequence that the “Beläggsmodell” does not fulfill any meaningful function. Instead, it has major consequences for different students' test grades. There are examples of students who at the same total score on the test receive everything from D to A as a test grade. The large differences arise through differences in performance on a very small number of items. If, instead, the total sum is used as a basis for generating test grades, the possibilities for fair and equivalent test grades increase, as shown by examples. Responsible authorities should as soon as possible consider switching to a system where the total sum points is the basis for the test grades.

Article Details

How to Cite
Bach, F. D. (2023). Beläggsmodellen i svenska nationella prov: Exemplet Religionskunskap årskurs 9. Educare, (1), 33–81.


Bach, F., Frändberg, B., Hagman, M., West, E., & Zetterqvist, A. (2019). Att betygsätta elevers kunskaper – möjligheter och begränsningar. Nordic Studies in Science Education, 15(2, 2), 159–173. DOI:

Bårman, K., Nyström, P., Rask, L., & Åström, M. (2010). Ämnesproven i biologi, fysik och kemi i årskurs 9.

Beaujean, A. A. (2014). Latent Variable Modeling Using R (1 edition). Routledge. DOI:

Beck, C. W. (2013). Jakten på kritisk pedagogikk. Norsk pedagogisk tidsskrift, 97(04-05), 304–314. DOI:

Brandén, H. (2016). Kritisk Realism. Linköping University Electronic Press.

Brown, T. A. (2015). Confirmatory Factor Analysis for Applied Research (Second edition.). The Guilford Press.

Crocker, L., & Algina, J. (2008). Introduction to Classical and Modern Test Theory. Cengage Learning.

Epskamp, S. (2019). semPlot: Path Diagrams and Visual Analysis of Various SEM Packages’ Output.

Grelsson, G., Bergqvist, G., & Jacobsson, N. (2013). Nya kursprov i biologi och kemi för gymnasiesko-lan : bakgrund och resultat. Umeå universitet.

Gustafsson, J.-E. (2008). Effects of International Comparative Studies on Educational Quality on the Quality of Educational Research. European Educational Research Journal, 7(1), 1–17. DOI:

Gustafsson, J.-E., Cliffordsson, C., & Erickson, G. (2014). Likvärdig kunskapsbedömning i och av den svenska skolan – problem och möjligheter (s. 120). SNS - Studieförbundet Näringsliv och Sam-hälle.

Hu, L., & Bentler, P. M. (1999). Cutoff Criteria for Fit Indexes in Covariance Structure Analy-sis: Conventional Criteria versus New Alternatives. Structural Equation Modeling: A Multidisci-plinary Journal, 6(1), 1–55. DOI:

Hylmö, A. (2007). Från ontologi till ideologi: en undersökning av den kritiska realismen som sociologisk vetenskapsteori.

Jiang, G., & Mai, Y. (2021). equaltestMI: Examine Measurement Invariance via Equivalence Testing and Projection Method.

Jorgensen, T. D., Pornprasertmanit, S., Schoemann, A. M., & Rosseel, Y. (2020). semTools: Use-ful tools for structural equation modeling.

Kane, M. T. (2013). Validating the Interpretations and Uses of Test Scores. Journal of Educational Measurement, 50(1), 1–73. DOI:

Kane, M. T. (2016). Explicating Validity. Assessment in Education: Principles, Policy & Practice, 23(2), 198–211. DOI:

Lindberg, V., Eriksson, I., & Pettersson, A. (2019). Formativ bedömning – utmaningar för undervisningen : en inramning. I Formativ bedömning – utmaningar för undervisningen (s. 9–16). Natur och kultur.

Lindskog, A., & Wåke, C. (2020). Nationella Prov i Religionskunskap | Institutionen För Didaktik Och Pedagogisk Profession, Göteborgs Universitet.

Livingston, S. A. (2018). Test Reliability—Basic Concepts (RM-18-01; Researh Memorandum, s. 46). Educational Testing Service.

Loehlin, J. C. (2004). Latent Variable Models an Introduction to Factor, Path, and Structural Equation Analysis (4. ed.). Mahwah, N.J. : L. Erlbaum Associates.

Messick, S. (1989). Validity. I R. L. Linn (Red.), Educational Measurement (3:e uppl., s. 13–103). American Council on Education & Macmillan.

Meyer, P. (2010). Understanding Measurement: Reliability. Oxford University Press. DOI:

R Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.

Revelle, W. (2020). psych: Procedures for Psychological, Psychometric, and Personality Rese-arch. Northwestern University.

Robinson, D., Hayes, A., & Couch, S. (2020). broom: Convert Statistical Objects into Tidy Tibbles.

Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, Articles, 48(2), 1–36. DOI:

RStudio Team. (2020). RStudio: Integrated Development Environment for R. RStudio, PBC.

Skolverket. (2016). Betygsskalan Och Betygen B Och D. Skolverket.

Skolverket. (2020). Likvärdiga betyg och meritvärden.

Skolverket. (2017). Skolverkets systemramverk för nationella prov. Skolverket.

SOU 2020:43. (2020). Bygga, bedöma, betygssätta - betyg som bättre motsvarar elevers kun-skaper. SOU 2020: Betänkande från Betygsutredningen 2018 (U 2018:03).

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., … Yutani, H. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686. DOI:

Wilson, M. (2005). Constructing Measures: An Item Response Modeling Approach (Har/Cdr). Routledge Academic.